姓名: | 周军 | 性别: |
男 | 出生年月: | ****** |
民族: |
汉 | 政治面貌: |
群众 | 职称: |
教授(研究员) |
任职时间: |
2011-07-01 | 学历: |
研究生 | 学位: |
博士 |
毕业院校: |
重庆大学 | 毕业专业: |
计算数学 | 毕业时间: |
2011-06-20 |
电子邮件: | jzhou@swu.edu.cn | 导师类别: |
博导 | 是否在岗: |
是 |
本院博士后: |
是 | 海外经历: |
是 | 专家类别: | 其它 |
个人简介 |
周军,博士,教授,硕士博士研究生导师,重庆市高校青年骨干教师,重庆市数学学会理事,担任美国“数学评论”评论员。2011年在重庆大学获博士学位(导师:穆春来教授),2007年在四川大学获硕士学位 (导师:穆春来教授),2012年-2013年,美国威廉玛丽学院访问学者(合作者:史峻平教授),2013年7月进入西南大学数学博士后流动站从事博士后研究(合作导师:唐春雷教授)。2007年7月入职西南大学澳门威斯尼斯人wns888入口,2016年6月晋升为教授。2014年入选重庆市高等学校青年骨干教师资助计划,主持了国家自然科学基金两项,中国博士后基金面上项目一等资助和特别资助各一项,重庆市自然科学基金一项,中央高校基本科研业务费一般项目,重点项目,重大项目各一项。主要研究方向包括:(1)偏微分方程与无穷维动力系统;(2)非线性反应扩散方程与模式生成。在《J. Differential Equations》、《Nonlinearity》、《Z. Angew. Math. Phys.》、《Nonlinear Dynamics》、《DCDS》、《Appl. Math. Lett.》、《Nonlinear Anal.》、《JMAA》、《中国科学》等国内外重要期刊上发表学术论文100余篇,其中SCI收录100余篇。
联系方式: email- jzhou@swu.edu.cn; Tel-15025367328 更多信息请访问学者网个人主页: http://www.scholat.com/jzhouswu
指导学生: 2020级:丁行(博士,在读) 2019级:杨文华(硕士,在读) 2018级:张欢(硕士,在读),刘旭(硕士,在读) 2017级:丁行(硕士,已毕业,发表SCI论文8篇,获国家奖学金); 邓秀梅(硕士,已毕业,发表SCI论文3篇,获国家奖学金); 彭静梅(硕士,已毕业,发表SCI论文1篇) 2016级:冯敏(硕士,已毕业,发表SCI论文1篇,获国家奖学金); 江蓉华(硕士,已毕业,发表SCI论文1篇,获国家奖学金) 2015级:徐光玉(硕士,已毕业,发表SCI论文6篇,获国家奖学金); 董智华(硕士,已毕业,发表SCI论文2篇) 2014级:郝爱景(硕士,已毕业,发表SCI论文3篇,获国家奖学金); 罗丽蓉(硕士,已毕业,发表SCI论文1篇,获国家奖学金)
近五年发表论文情况(*表示通讯作者) [1] Ding, Hang; Zhou, Jun*. Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. Nonlinearity, 2020, https://doi.org/10.1088/1361-6544/ab9f84 [2] Zhou, Jun*. Behavior of solutions to a fourth-order nonlinear parabolic equation with logarithmic nonlinearity. Appl Math Optim., 2019, https://doi.org/10.1007/s00245-019-09642-6 [3] Ding, Hang; Zhou, Jun*. Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity. Appl Math Optim., 2019, https://doi.org/10.1007/s00245-019-09603-z [4] Zhou, Jun*. Fujita exponent for a inhomogeneous pseudo-parabolic equation. Rocky Mount. J. Math., 2019, in press. [5] Ding, Hang; Zhou, Jun*. Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. Nonlinearity, 2020, 33, 1046-288 [6] Zhou, Jun*. Critical Fujita exponent for the porous medium equation in R^N with hole. Bull. Belg. Math. Soc. Simom Stevin, 2020, 27, 299-319. [7] Liu, Xu; Zhou, Jun*. Initial-boundary value problem for a fourth-order plate equation with Hardy- Henon potential and polynomial nonlinearity. Elec. Resear. Arch., 2020, 28(2), 599-625. [8] Zhou, Jun*. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Elec. Resear. Arch., 2020, 28(1), 67-90. [9] Xu, Guangyu; Zhou, Jun*; Mu, Chunlai. Global existence, finite time blow-up, and vacuum isolating phenomenon for a class of thin-film equation. J. Dyn. Control Syst., 2020, 26(2): 265-288 [10] Zhou, Jun*. Lifespan, asymptotic behavior and ground-state solutions to a nonlocal parabolic equation. Z. Angew. Math. Phys., 2020, 71(1): Paper No. 28, 17 [11] Zhou, Jun*. Bifurcation analysis of a single species reaction-diffusion model with nonlocal delay. J. Korean Math. Soc., 2020, 57(1): 249-281 [12] Deng, Xiumei; Zhou, Jun*. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Commun. Pure Appl. Anal., 2020, 19(2): 923-939 [13] Deng, Xiumei; Zhou, Jun*. Global existence, extinction, and non-extinction of solutions to a fast diffusion p-Laplace evolution equation with singular potential. J. Dyn. Control Syst., 2020, 26(3): 509-523 [14] Ding, Hang; Zhou, Jun*. Two new blow-up conditions for a pseudo-parabolic equation with logarithmic nonlinearity. Bull. Korean Math. Soc., 2019, 56(5): 1285-1296 [15] Zhou, Jun*. Blow-up and exponential decay of solutions to a class of pseudo-parabolic equation. Bull. Belg. Math. Soc. Simon Stevin, 2019, 26(5): 773-785 [16] Zhou, Jun*. Bifurcation analysis of a diffusive predator-prey model with Bazykin functional response. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2019, 29(10): 1950136, 27 [17] Zhou, Jun*. Ground state solution for a fourth-order elliptic equation with logarithmic nonlinearity modeling epitaxial growth. Comput. Math. Appl., 2019, 78(6): 1878-1886 [18] Ding, Hang; Zhou, Jun*. Global existence and blow-up for a mixed pseudo-parabolic p- Laplacian type equation with logarithmic nonlinearity. J. Math. Anal. Appl., 2019, 478(2): 393-420 [19] Ding, Hang; Zhou, Jun*. Comments on the paper "Asymptotic behavior for a fourth-order parabolic equation involving the {H}essian. Z. Angew. Math. Phys., (2018) 69: 147" [ 3874710]. Z. Angew. Math. Phys., 2019, 70(4): Paper No. 104, 5 [20] Xu, Guangyu; Zhou, Jun*. Global existence and blow-up of solutions to a class of nonlocal parabolic equations. Comput. Math. Appl., 2019, 78(3): 979-996 [21] Jiang, Ronghua; Zhou, Jun*. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Commun. Pure Appl. Anal., 2019, 18(3): 1205-1226 [22] Zhou, Jun*. Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth. Nonlinear Anal. Real World Appl., 2019, 48: 54-70 [23] Xu, Guangyu; Zhou, Jun*. Asymptotic behavior for a fourth-order parabolic equation involving the Hessian. Z. Angew. Math. Phys., 2018, 69(6): Paper No. 147, 16 [24] Zhou, Jun*. L^2-norm blow-up of solutions to a fourth order parabolic PDE involving the Hessian. J. Differential Equations, 2018, 265(9): 4632-4641 [25] Xu, Guangyu; Zhou, Jun*. Global existence and blow-up of solutions to a singular non-Newton polytropic filtration equation with critical and supercritical initial energy. Commun. Pure Appl. Anal., 2018, 17(5): 1805-1820 [26] Zhou, Jun*. Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation. J. Math. Anal. Appl., 2018, 464(2): 1290-1312 [27] Feng, Min; Zhou, Jun*. Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential. J. Math. Anal. Appl., 2018, 464(2): 1213-1242 [28] Dong, Zhihua; Zhou, Jun*. Blow-up of solutions to a parabolic system with nonlocal source. Appl. Anal., 2018, 97(5): 825-841 [29] Xu, Guangyu; Zhou, Jun*. Lifespan for a semilinear pseudo-parabolic equation. Math. Methods Appl. Sci., 2018, 41(2): 705-713 [30] Zhou, Jun*. Blow-up and lifespan of solutions to a nonlocal parabolic equation at arbitrary initial energy level. Appl. Math. Lett., 2018, 78: 118-125 [31] Xu, Guangyu; Zhou, Jun*. Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy. J. Math. Anal. Appl., 2018, 458(1): 521-535 [32] Zhou, Jun*. Quenching for a parabolic equation with variable coefficient modeling MEMS technology. Appl. Math. Comput., 2017, 314: 7-11 [33] Dong, Zhihua; Zhou, Jun*. Global existence and finite time blow-up for a class of thin-film equation. Z. Angew. Math. Phys., 2017, 68(4): Paper No. 89, 17 [34] Xu, Guangyu, Zhou, Jun*. Global existence and blow-up for a fourth order parabolic equation involving the Hessian. NoDEA Nonlinear Differential Equations Appl., 2017, 24(4): Paper No. 41, 12 [35] Zhou, Jun*. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete Contin. Dyn. Syst. Ser. S, 2017, 10(5): 1175-1185 [36] Xu, Guangyu; Zhou, Jun*. Upper bounds of blow-up time and blow-up rate for a semi-linear edge-degenerate parabolic equation. Appl. Math. Lett., 2017, 73: 1-7 [37] Zhou, Jun*. Turing instability and Hopf bifurcation of a bimolecular model with autocatalysis and saturation law. Acta Math. Sci. Ser. A (Chin. Ed.), 2017, 37(2): 366-373 [38] Zhou, Jun*. Pattern formation in a general Degn-Harrison reaction model. Bull. Korean Math. Soc., 2017, 54(2): 655-666 [39] Hao, Aijing; Zhou, Jun*. A new blow-up condition for a parabolic equation with singular potential. J. Math. Anal. Appl., 2017, 449(1): 897-906 [40] Hao, Aijing; Zhou, Jun*. A new blow-up condition for semi-linear edge degenerate parabolic equation with singular potentials. Appl. Anal., 2017, 96(3): 363-374 [41] Hao, Aijing; Zhou, Jun*. Blowup, extinction and non-extinction for a nonlocal p-biharmonic parabolic equation. Appl. Math. Lett., 2017, 64: 198-204 [42] Zhou, Jun*. Blow-up for a thin-film equation with positive initial energy. J. Math. Anal. Appl., 2017, 446(1): 1133-1138 [43] Zhou, Jun*. Blow-up of solutions for the non-Newtonian polytropic filtration equation with a generalized source. Ann. Polon. Math., 2016, 116(3): 197-216 [44] Zhou, Jun*. Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. Math. Biosci. Eng., 2016, 13(4): 857-885 [45] Zhou, Jun*. Qualitative analysis of a producer-scrounger model. J. Math. Anal. Appl., 2016, 440(1): 33-47 [46] Zhou, Jun*. Positive solutions of a diffusive predator-prey mutualist model with cross-diffusion. Topol. Methods Nonlinear Anal., 2016, 47(1): 125-145 [47] Zhou, Jun*. Global existence and blow-up of solutions for a non-Newton polytropic filtration system with special volumetric moisture content. Comput. Math. Appl., 2016, 71(5): 1163-1172 [48] Zhou, Jun*. Bifurcation analysis of the Oregonator model., Appl. Math. Lett., 2016, 52: 192-198
|
学术团体兼职 |
|
海外经历 |
起止时间 国家 学校 2011-02-01至2013-02-01 USA College of William and Mary |