学术报告
报告题目:Starting-point Entropy and Shigesada–Kawasaki–Teramoto Model
报告人:陈秀卿 (中山大学)
报告时间:2023年5月25日(周四)下午16:30
报告地点:西南大学澳门威斯尼斯人wns888入口讨论室一(915)
报告人简介:
陈秀卿,中山大学“百人计划”教授,博士生导师,数学学院(珠海)副院长,中国工业与应用数学会第七届理事。研究方向为偏微分方程。在CMP、ARMA、SIMA、JDE、M3AS等学术期刊上发表论文近三十篇。主持国家自然科学基金项目三项。
报告摘要:
The existence of global weak solutions to the cross-diffusion model of Shigesada, Kawasaki, and Teramoto for an arbitrary number of species is proved. The model consists of strongly coupled parabolic equations for the population densities in a bounded domain with no-flux boundary conditions, and it describes the dynamics of the segregation of the population species. The diffusion matrix is neither symmetric nor positive semidefinite. A new logarithmic entropy allows for an improved condition on the coefficients of heavily nonsymmetric diffusion matrices, without imposing the detailed-balance condition that is often assumed in the literature. Furthermore, the large-time convergence of the solutions to the constant steady state is proved by using the relative entropy associated to the logarithmic entropy.